99 research outputs found

    Indications for Digital Monitoring of Patients With Multiple Nevi: Recommendations from the International Dermoscopy Society

    Full text link
    Introduction: In patients with multiple nevi, sequential imaging using total body skin photography (TBSP) coupled with digital dermoscopy (DD) documentation reduces unnecessary excisions and improves the early detection of melanoma. Correct patient selection is essential for optimizing the efficacy of this diagnostic approach. Objectives: The purpose of the study was to identify, via expert consensus, the best indications for TBSP and DD follow-up. Methods: This study was performed on behalf of the International Dermoscopy Society (IDS). We attained consensus by using an e-Delphi methodology. The panel of participants included international experts in dermoscopy. In each Delphi round, experts were asked to select from a list of indications for TBSP and DD. Results: Expert consensus was attained after 3 rounds of Delphi. Participants considered a total nevus count of 60 or more nevi or the presence of a CDKN2A mutation sufficient to refer the patient for digital monitoring.  Patients with more than 40 nevi were only considered an indication in case of personal history of melanoma or red hair and/or a MC1R mutation or history of organ transplantation. Conclusions: Our recommendations support clinicians in choosing appropriate follow-up regimens for patients with multiple nevi and in applying the time-consuming procedure of sequential imaging more efficiently. Further studies and real-life data are needed to confirm the usefulness of this list of indications in clinical practice

    Human-computer collaboration for skin cancer recognition

    Get PDF
    The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care. Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows. We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support. We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage. In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts. Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis. Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1

    EczemaNet: automating detection and severity assessment of atopic dermatitis

    Get PDF
    Atopic dermatitis (AD), also known as eczema, is one of themost common chronic skin diseases. AD severity is primarily evaluatedbased on visual inspections by clinicians, but is subjective and has largeinter- and intra-observer variability in many clinical study settings. Toaid the standardisation and automating the evaluation of AD severity,this paper introduces a CNN computer vision pipeline, EczemaNet, thatfirst detects areas of AD from photographs and then makes probabilisticpredictions on the severity of the disease. EczemaNet combines trans-fer and multitask learning, ordinal classification, and ensembling overcrops to make its final predictions. We test EczemaNet using a set of im-ages acquired in a published clinical trial, and demonstrate low RMSEwith well-calibrated prediction intervals. We show the effectiveness of us-ing CNNs for non-neoplastic dermatological diseases with a medium-sizedataset, and their potential for more efficiently and objectively evaluatingAD severity, which has greater clinical relevance than mere classification

    A Comparison of Machine Learning Methods for Cross-Domain Few-Shot Learning

    Get PDF
    We present an empirical evaluation of machine learning algorithms in cross-domain few-shot learning based on a fixed pre-trained feature extractor. Experiments were performed in five target domains (CropDisease, EuroSAT, Food101, ISIC and ChestX) and using two feature extractors: a ResNet10 model trained on a subset of ImageNet known as miniImageNet and a ResNet152 model trained on the ILSVRC 2012 subset of ImageNet. Commonly used machine learning algorithms including logistic regression, support vector machines, random forests, nearest neighbour classification, naĂŻve Bayes, and linear and quadratic discriminant analysis were evaluated on the extracted feature vectors. We also evaluated classification accuracy when subjecting the feature vectors to normalisation using p-norms. Algorithms originally developed for the classification of gene expression data—the nearest shrunken centroid algorithm and LDA ensembles obtained with random projections—were also included in the experiments, in addition to a cosine similarity classifier that has recently proved popular in few-shot learning. The results enable us to identify algorithms, normalisation methods and pre-trained feature extractors that perform well in cross-domain few-shot learning. We show that the cosine similarity classifier and ℓÂČ -regularised 1-vs-rest logistic regression are generally the best-performing algorithms. We also show that algorithms such as LDA yield consistently higher accuracy when applied to ℓÂČ -normalised feature vectors. In addition, all classifiers generally perform better when extracting feature vectors using the ResNet152 model instead of the ResNet10 model

    Deep neural network or dermatologist?

    Full text link
    Deep learning techniques have proven high accuracy for identifying melanoma in digitised dermoscopic images. A strength is that these methods are not constrained by features that are pre-defined by human semantics. A down-side is that it is difficult to understand the rationale of the model predictions and to identify potential failure modes. This is a major barrier to adoption of deep learning in clinical practice. In this paper we ask if two existing local interpretability methods, Grad-CAM and Kernel SHAP, can shed light on convolutional neural networks trained in the context of melanoma detection. Our contributions are (i) we first explore the domain space via a reproducible, end-to-end learning framework that creates a suite of 30 models, all trained on a publicly available data set (HAM10000), (ii) we next explore the reliability of GradCAM and Kernel SHAP in this context via some basic sanity check experiments (iii) finally, we investigate a random selection of models from our suite using GradCAM and Kernel SHAP. We show that despite high accuracy, the models will occasionally assign importance to features that are not relevant to the diagnostic task. We also show that models of similar accuracy will produce different explanations as measured by these methods. This work represents first steps in bridging the gap between model accuracy and interpretability in the domain of skin cancer classification

    Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge

    Full text link
    Previous studies of artificial intelligence (AI) applied to dermatology have shown AI to have higher diagnostic classification accuracy than expert dermatologists; however, these studies did not adequately assess clinically realistic scenarios, such as how AI systems behave when presented with images of disease categories that are not included in the training dataset or images drawn from statistical distributions with significant shifts from training distributions. We aimed to simulate these real-world scenarios and evaluate the effects of image source institution, diagnoses outside of the training set, and other image artifacts on classification accuracy, with the goal of informing clinicians and regulatory agencies about safety and real-world accuracy.We designed a large dermoscopic image classification challenge to quantify the performance of machine learning algorithms for the task of skin cancer classification from dermoscopic images, and how this performance is affected by shifts in statistical distributions of data, disease categories not represented in training datasets, and imaging or lesion artifacts. Factors that might be beneficial to performance, such as clinical metadata and external training data collected by challenge participants, were also evaluated. 25?331 training images collected from two datasets (in Vienna [HAM10000] and Barcelona [BCN20000]) between Jan 1, 2000, and Dec 31, 2018, across eight skin diseases, were provided to challenge participants to design appropriate algorithms. The trained algorithms were then tested for balanced accuracy against the HAM10000 and BCN20000 test datasets and data from countries not included in the training dataset (Turkey, New Zealand, Sweden, and Argentina). Test datasets contained images of all diagnostic categories available in training plus other diagnoses not included in training data (not trained category). We compared the performance of the algorithms against that of 18 dermatologists in a simulated setting that reflected intended clinical use.64 teams submitted 129 state-of-the-art algorithm predictions on a test set of 8238 images. The best performing algorithm achieved 58·8% balanced accuracy on the BCN20000 data, which was designed to better reflect realistic clinical scenarios, compared with 82·0% balanced accuracy on HAM10000, which was used in a previously published benchmark. Shifted statistical distributions and disease categories not included in training data contributed to decreases in accuracy. Image artifacts, including hair, pen markings, ulceration, and imaging source institution, decreased accuracy in a complex manner that varied based on the underlying diagnosis. When comparing algorithms to expert dermatologists (2460 ratings on 1269 images), algorithms performed better than experts in most categories, except for actinic keratoses (similar accuracy on average) and images from categories not included in training data (26% correct for experts vs 6% correct for algorithms, p<0·0001). For the top 25 submitted algorithms, 47·1% of the images from categories not included in training data were misclassified as malignant diagnoses, which would lead to a substantial number of unnecessary biopsies if current state-of-the-art AI technologies were clinically deployed.We have identified specific deficiencies and safety issues in AI diagnostic systems for skin cancer that should be addressed in future diagnostic evaluation protocols to improve safety and reliability in clinical practice.Melanoma Research Alliance and La Marató de TV3.Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved

    Human surface anatomy terminology for dermatology: a Delphi consensus from the International Skin Imaging Collaboration

    Full text link
    BackgroundThere is no internationally vetted set of anatomic terms to describe human surface anatomy.ObjectiveTo establish expert consensus on a standardized set of terms that describe clinically relevant human surface anatomy.MethodsWe conducted a Delphi consensus on surface anatomy terminology between July 2017 and July 2019. The initial survey included 385 anatomic terms, organized in seven levels of hierarchy. If agreement exceeded the 75% established threshold, the term was considered - accepted- and included in the final list. Terms added by the participants were passed on to the next round of consensus. Terms with <75% agreement were included in subsequent surveys along with alternative terms proposed by participants until agreement was reached on all terms.ResultsThe Delphi included 21 participants. We found consensus (- „75% agreement) on 361/385 (93.8%) terms and eliminated one term in the first round. Of 49 new terms suggested by participants, 45 were added via consensus. To adjust for a recently published International Classification of Diseases- Surface Topography list of terms, a third survey including 111 discrepant terms was sent to participants. Finally, a total of 513 terms reached agreement via the Delphi method.ConclusionsWe have established a set of 513 clinically relevant terms for denoting human surface anatomy, towards the use of standardized terminology in dermatologic documentation.Linked Commentary: R.J.G. Chalmers. J Eur Acad Dermatol Venereol 2020; 34: 2456- 2457. https://doi.org/10.1111/jdv.16978.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/1/jdv16855_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/2/jdv16855-sup-0001-FigS1-S3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/3/jdv16855.pd

    Position statement of the EADV Artificial Intelligence (AI) Task Force on AI‐assisted smartphone apps and web‐based services for skin disease

    Full text link
    Background: As the use of smartphones continues to surge globally, mobile applications (apps) have become a powerful tool for healthcare engagement. Prominent among these are dermatology apps powered by Artificial Intelligence (AI), which provide immediate diagnostic guidance and educational resources for skin diseases, including skin cancer. Objective: This article, authored by the EADV AI Task Force, seeks to offer insights and recommendations for the present and future deployment of AI‐assisted smartphone applications (apps) and web‐based services for skin diseases with emphasis on skin cancer detection.MethodsAn initial position statement was drafted on a comprehensive literature review, which was subsequently refined through two rounds of digital discussions and meticulous feedback by the EADV AI Task Force, ensuring its accuracy, clarity and relevance. Results: Eight key considerations were identified, including risks associated with inaccuracy and improper user education, a decline in professional skills, the influence of non‐medical commercial interests, data security, direct and indirect costs, regulatory approval and the necessity of multidisciplinary implementation. Following these considerations, three main recommendations were formulated: (1) to ensure user trust, app developers should prioritize transparency in data quality, accuracy, intended use, privacy and costs; (2) Apps and web‐based services should ensure a uniform user experience for diverse groups of patients; (3) European authorities should adopt a rigorous and consistent regulatory framework for dermatology apps to ensure their safety and accuracy for users. Conclusions: The utilisation of AI‐assisted smartphone apps and web‐based services in diagnosing and treating skin diseases has the potential to greatly benefit patients in their dermatology journeys. By prioritising innovation, fostering collaboration and implementing effective regulations, we can ensure the successful integration of these apps into clinical practice
    • 

    corecore